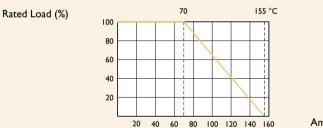
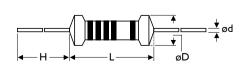
Metal Film Resistors


Precision Type Normal & Miniature Style [MFP Series]

FEATURES

Power Rating	1/6W, 1/4W, 0.4W, 1/2W, 0.6W, 1W, 2W, 3W
Resistance Tolerance	±0.1%, ±0.25%, (±0.02%, ±0.05% on request)
T.C.R.	±15ppm/°C, ±25ppm/°C, (±5ppm/°C, ±10ppm/°C on request)

DERATING CURVE


For resistors operated in ambient temperatures above 70°C, power rating must be derated in accordance with the curve below.

Ambient Temperature (°C)

DIMENSIONS

Unit: mm

STYLE		DIMENSION						
Normal	Miniature	L	øD	н	ød			
MFP-12	MFP25S	3.4±0.3	1.9±0.2	28±2.0	0.45±0.05			
MFP204	-	3.4±0.3	1.9±0.2	28±2.0	0.45±0.05			
MFP-25	MFP50S	6.3±0.5	2.4±0.2	28±2.0	0.55±0.05			
MFP207	-	6.3±0.5	2.4±0.2	28±2.0	0.55±0.05			
MFP-50	MFPIWS	9.0±0.5	3.3±0.3	26±2.0	0.55±0.05			
MFP100	MFP2WS	.5± .0	4.5±0.5	35±2.0	0.8±0.05			
MFP200	MFP3WS	15.5±1.0	5.0±0.5	33±2.0	0.8±0.05			

INTRODUCTION

The MFP Series Metal Film Precision Resistors are manufactured using a vacuum sputtering system to deposit multiple layers of mixed metal alloys and passivative materials onto a carefully treated high grade ceramic substrate. After a helical groove has been cut in the resistive layer, tinned connecting leads of electrolytic copper are welded to the end-caps. The resistors are coated with layers of blue color lacquer. Ultra high precision resistors, ultra high stability, ultra low temperature coefficient.

Note:		
_		

ELECTRICAL CHARACTERISTICS

STYLE	MFP-12	MFP25S	MFP204	MFP-25	MFP50S	MFP207	MFP-50	MFPIWS	MFP100	MFP2WS	MFP200	MFP3WS
Power Rating at 70°C	1/6W	1/4W	0.4W	1/4W	1/2W	0.6W	1/2W	IW		2W		3W
Maximum Working Voltage	150V	200V		250V		-	350V	400V	500V			
Maximum Overload Voltage	300V	400V		500V	600V		700V	800V	1,000V			
Voltage Proof on Insulation	300V			500V				700∨	1,000V			
Resistance Range	1 I - Ω0 I	I 0Ω - I MΩ for E192 series value										
Operating Temp. Range	-55°C to	-55°C to +155°C										
Temperature Coefficient	±15ppm/	±I5ppm/°C, ±25ppm/°C										

Note: Special value is available on request

ENVIRONMENTAL CHARACTERISTICS

PERFORMANCE TEST	TEST METHOD	APPRAISE		
Short Time Overload	IEC 60115-14.13	2.5 times RCWV for 5 Sec.	±0.25%+0.05Ω	
Voltage Proof on Insulation	IEC 60115-14.7	in V-block for 60 Sec., test voltage by type	By type	
Temperature Coefficient	IEC 60115-1 4.8	-55°C to +155°C	By type	
Insulation Resistance	IEC 60115-14.6	in V-block for 60 Sec.	>10,000ΜΩ	
Solderability	IEC 60115-1 4.17	235±5°C for 3±0.5 Sec.	95% Min. coverage	
Solvent Resistance of Marking	IEC 60115-1 4.30	IPA for 5±0.5 Min. with ultrasonic	No deterioration of coatings and markings	
Robustness of Terminations	IEC 60115-1 4.16	Direct load for 10 Sec. in the direction of the terminal leads	≥2.5kg (24.5N)	
Periodic-pulse Overload	IEC 60115-1 4.39	4 times RCWV 10,000 cycles (1 Sec. on, 25 Sec. off)	±1.0%+0.05Ω	
Damp Heat Steady State	IEC 60115-1 4.24	40±2°C, 90-95% RH for 56 days, loaded with 0.1 times RCWV	±1.5%+0.05Ω	
Endurance at 70°C	IEC 60115-1 4.25	70±2°C at RCWV for 1,000 Hr. (1.5 Hr. on, 0.5 Hr. off)	±1.5%+0.05Ω	
Temperature Cycling	IEC 60115-1 4.19	-55°C ⇔ Room Temp. ⇔ +155°C ⇔ Room Temp. (5 cycles)	±0.75%+0.05Ω	
Resistance to Soldering Heat	IEC 60115-1 4.18	260±3°C for 10±1 Sec., immersed to a point 3±0.5mm from the body	±0.25%+0.05Ω	

Note: RCWV(Rated Continuous Working Voltage) = $\sqrt{Power Rating \times Resistance Value}$ or Max. working voltage listed above, whichever less.

Revision: 201304

7